Angle Matcher

Matches angles concretely. Explicitly recognizes parallels from non-parallels in specific contexts. Sorts angles into “smaller” or “larger” (but may be misled by irrelevant features, such as length of line segments).


You may see this:

Linked Image to Sign In/Sign Up page

Other Examples:

  • Given several non-congruent triangles, finds pairs that have one angle that is the same measure, by laying the angles on top of one another.

Help your student become a(n) Angle Matcher

These activities involve seeing, finding, and showing angles that are the same size. A simple but important example is the right angle (e.g., to be a rectangle or square, all the angles have to be the same right angles).  This level uses supportive materials, such as congruent shapes (so the angles have sides that are the same length).

Special Thanks To

Institute of Education Sciences
The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through grant numbers R305K050157, R305A120813, R305A110188, and R305A150243. to the University of Denver. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education.